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Abstract. Creating stereo ground truth based on real images is a mea-
surement task. Measurements are never perfectly accurate: the depth
at each pixel follows an error distribution. A common way to estimate
the quality of measurements are error bars. In this paper we describe
a methodology to add error bars to images of previously scanned static
scenes. The main challenge for stereo ground truth error estimates based
on such data is the nonlinear matching of 2D images to 3D points. Our
method uses 2D feature quality, 3D point and calibration accuracy as well
as covariance matrices of bundle adjustments. We sample the reference
data error which is the 3D depth distribution of each point projected
into 3D image space. The disparity distribution at each pixel location
is then estimated by projecting samples of the reference data error on
the 2D image plane. An analytical Gaussian error propagation is used to
validate the results. As proof of concept, we created ground truth of an
image sequence with 100 frames. Results show that disparity accuracies
well below one pixel can be achieved, albeit with much large errors at
depth discontinuities mainly caused by uncertain estimates of the camera
location.

1 Introduction

Reference data is needed when quantitative performance evaluations are a re-
quirement; this is for example the case for safety-relevant applications such
as driver assistance systems. Whenever real data needs to be augmented with
ground truth, measurement devices such as 3D scanners are used. These devices
come with their own limits of accuracy. 3D scanners are for example limited in
accuracy at objects with low reflectance, glossy surfaces or high geometric detail.
Therefore, ground truth is never perfect - we need to understand the limits of
the measurement devices in order to judge the quality of a ground truth dataset.

As a rule of thumb, a measurement device should be one order of magnitude
more accurate than the required accuracy for the system to be evaluated. Many
current stereo benchmarks analyze the number of pixels with a disparity error of
one or more pixels [1]. Hence, to create stereo ground truth, the disparity map
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Fig. 1. Ground truth needs error bars. Left: left stereo image with overlay of dynamic
objects. Right: ground truth disparities with sparse overlay of 3σ uncertainty ellipses.
The disparity error is encoded in the color of the ellipse. Since the measured reference
data is always subject to measurement errors the resulting ground truth dataset can
contain uncertainties.

coming with the camera images should be around a tenth of a pixel accurate.
The 3D data acquired by a scanner needs to be analyzed in pixel disparity space,
resulting in mainly two errors: first, a depth-dependent error is introduced by
the 3D-to-2D projection. This error becomes smaller with distance in case the
scanner has a constant accuracy with respect to spatial coordinates. Second,
a matching-dependent error occurs caused by bad alignment of the 2D image
with the 3D scene. This results in very large, mostly bimodal error distribution
near depth discontinuities. Both error sources cause highly different errors at
individual pixel locations, rendering a general approximate error estimate for
the full dataset relatively meaningless.

For this paper, we set up a high-end camera stereo system and reconstructed
a large outdoor set using the best LIDAR system available for this task. Our aim
is to focus on accuracy: how accurate can our real-world ground truth become
at individual pixels when all involved systems are state of the art? To this end,
we devised a method to estimate the accuracy of our ground truth at the pixel
level. This paper does not propose a new dataset. Instead, we propose a method
to create arbitrary stereo ground truth datasets with reliable per-pixel error
bars (cf. Figure 1). Although our approach generalizes to arbitrary 3D scanners
and camera setups in static scenes, we focus on large-scale outdoor scenes (>
30.000 m2) which can to date only be acquired by LIDAR systems.

Our approach is illustrated in Figure 2 and is divided into the following steps:
The static scene is scanned first and then a calibrated stereo sequence is recorded
within this scene. The camera location for each frame is locally estimated based
on manually selected 2D-3D-correspondences. All cameras and correspondences
are inserted into a bundle adjustment model considering all error sources appro-
priately based on Gaussian errors in 2D feature localization, LIDAR accuracy
and camera calibration parameters. Finally, the covariance of the functional is
evaluated at the solution to assess the uncertainty in the derived camera ex-
trinsics. The resulting error distributions of the inputs (LIDAR, image data,
intrinsics) and derived inputs (extrinsics) are mapped into image space and,
subsequently, into disparity space using both analytic error propagation and
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Fig. 2. Workflow stages: Starting with a LIDAR scan and an image sequence we com-
pute 2D feature tracks. These are matched manually with landmark 3D points using
manual annotations (Section 3.1). Using these annotations and the other 2D feature
tracks we estimate the pose of each frame (Section 3.1). By means of covariance anal-
ysis and uncertainty propagation we then obtain uncertainties in the localization of
reprojected 3D point cloud (Section 4). We then combine these localization uncertain-
ties with the reprojections to finally output reference disparity maps and per pixel
disparity distributions (Section 5).

Monte Carlo sampling. As a result, our method comprises a full error propa-
gation, starting with Gaussian error assumptions of the involved measurement
devices and ending at per-pixel non-parametric disparity distributions.

2 Related Work

Generation Techniques: Ground truth generation implies two parts: an evalu-
ation dataset and a reference dataset with superior accuracy. Different techniques
differ in the way these datasets are obtained [2].

Synthetic imagery [3–5] allows for generation of reference data with little
uncertainty and makes white box testing of algorithms feasible by varying pa-
rameters such as geometry, light and materials. Yet, it remains to be shown
whether content and renderer model reality well enough [6, 7].

Another option is to record real data and use manual annotations. While
relatively new to low-level vision, efforts have been undertaken with some success
[8]. With the advent of crowd-sourcing platforms [9], generation of such data
has also become scalable. While the accuracy is reported to be good in general,
possible biases introduced by humans are yet to be investigated.

Finally, reference data can also be obtained by measurement e.g by using
more than two cameras [10] , additional devices such as the Kinect[11] a LIDAR
scanner [12] or by using multiple exposures and UV-paint as in [1]. The approach
of using more data sources is not as costly and sometimes scales very well because
existing vision algorithms only need to be slightly modified. It should be noted
however that in any case the reference data is itself obtained by measurement
and therefore subject to uncertainty. Assessing this uncertainty in our opinion
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is of utmost importance as statements such as “LIDAR is always more accurate
than stereo” do not hold in general [13].

Stereo Datasets1: General-purpose real-world reference data has been pub-
lished in the Middlebury database [1] with an estimated accuracy of around
1/60th of a pixel. This value is derived from assumptions on the used block
matching scheme and a down-sampling of originally larger images.

The EISATS database comprises a variety of sequences both real and syn-
thetic [10, 14]. Using a third camera in the real dataset for additional redundancy
proved to be beneficial for achieving an improved quality, but the accuracy of
this data has not been thoroughly evaluated.

The closest approach to ours in terms of experimental setup is the KITTI
dataset [12]: here, a stereo setup was combined with a car-mounted laser scan-
ner. Mounting a LIDAR on the car has two main advantages. The scene can
be recorded both in 2D and 3D at the same time and the density of 3D mea-
surements is maximized as the LIDAR is very close to the optical axis of the
stereo cameras. A disadvantage is that the system is moving while scanning, in-
troducing a possibly low point density at high speed as well as motion artifacts.
Although the accuracy was not explicitly evaluated in the original publication,
it is reported by the authors to be less than three disparities for most of the
pixels.

In our approach, the scene is scanned first and recorded later. Hence, motion
artifacts cannot occur and the sampling is spatially roughly uniform. In both
KITTI and our setup LIDAR was chosen as the most accurate and viable option
to obtain depth in large scenes. Note, however, that our approach can be applied
to any measurement technique with known uncertainty. Also all the main focus
of all these databases is the creation of the ground truth database and the
evaluation of algorithms. We focus on neither of both: Our aim is to exemplify
error bar computation for real-world stereo ground truth using an appropriate
statistical model.

Finally, the work most similar to ours in terms of scope is [13]. Here uncertain-
ties in camera intrinsics/extrinsics, LIDAR measurements and image key-point
estimation are propagated to obtain reconstruction uncertainties for multiple
view stereo. While the authors make extensive use of sampling to estimate un-
certainty we provide an analytical solution for both camera pose estimation and
the uncertainty of the disparity maps. This makes handling large numbers of
frames (more than 1000 vs 25 in [13]) tractable in the first place. While com-
paring a re-implemented version of their method with the proposed method we
not only see a considerable speed up, even for small problems - we also observe
tighter bounds on the camera pose uncertainty (cf. Section 3.2).

Uncertainty Estimation for Bundle Adjustment: A rich body of work
exists on the theory of uncertainty estimation in the related field of bundle ad-
justment [15–18]. Most techniques use local features of the bundle adjustment
energy in the optimum e.g. covariance analysis. A lot of effort is then put into

1 Although most of the following works comprise additional datasets next to stereo
data, we only focus on the latter.
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Fig. 3. From left to right: stereo rig, set photo, LIDAR mounted on car and resulting
data.

tackling the inherent gauge ambiguity issue of the structure from motion prob-
lem. While we do use a bundle adjustment variant for estimating the camera
parameters we circumvent the gauge ambiguity issue by fixing the gauge to the
LIDAR reference frame. Also, it should be noted that our final goal is not the
reconstruction of the camera parameters but rather stereo disparity maps with
a per pixel uncertainty. To assess the quality of our camera reconstructions we
build on work in [19].

3 Ground Truth Acquisition

The acquisition modalities are depicted in Figure 3. A reference 3D point cloud of
a street of houses was collected using a RIEGL VMX-250-CS6. The stereo system
consists of two cameras with a 30 cm baseline equipped with 12 mm lenses With
a sensor size of 16.64 mm×14.04 mm, this corresponds to a field of view of 69.5◦.
The image sequences were acquired at 200 Hz with a resolution of 2560×1080
pixels. Preprocessing steps of the stereo data involved a lossless compression [20]
of the 16 bit pixel data to 8 bits as well as camera calibration using [21]. Further
details of the acquisition system can be found in the supplemental material.

3.1 2D-3D Alignment

All measurement based reference data acquisition systems rely on a 2D-3D align-
ment step at some point of the processing pipeline. To build on this step for both
explaining our alignment process as well as on how we derive error bars, we will
now review the basic pose estimation and calibration process.

With K we refer to the set of possible internal camera parameters and with
so(3) the group of rotations. For a distortion free perspective camera with 4
parameters2 K = R4. Let

π : (X, t, κ)→ x, (1)

X ∈ R3, t ∈ so(3)× R3, κ ∈ K, (2)

2 horizontal vertical focal lengths (fx, fy), principle point (cx, cy)
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be the projective mapping of point X from the world to image coordi-
nate system using the extrinsic parameters t and intrinsics κ. Furthermore, let
{(Xi,x

j
i)} be a set of 3D-2D correspondences of p measured 3D points Xi and

their projections xj
i in the jth frame of an image sequence containing n images.

Then, the optimal intrinsic parameter κ∗ and set of extrinsics T ∗ = {tj∗} for
each of the n frames is given by

(T ∗, κ∗) = argmin
T,κ

n∑
j=0

∑
i∈V (j)

∥∥∥π (Xi, t
j, κ
)
− xj

i

∥∥∥2, (3)

where V (j) ⊂ [0...p] is the subset of 3D points that are visible in the jth frame.
For a fixed camera - LIDAR setup such as KITTI this is done once in a calibration
step with calibration targets before acquisition. Both geometry and projection
of salient points are known here such that P can be obtained automatically.
In our case the LIDAR and the camera rig measure independently. This has
the advantage of having LIDAR data at a much higher point density and allows
for capturing image sequences from other camera modalities (e.g Time-of-Flight,
Plenoptic cameras) without requiring all cameras to be mounted on the same rig.
In this setup, however, 2D-3D correspondences cannot be automatically aligned
anymore. Picking individual points out of eight million options is an extremely
tedious and error-prone task. We propose an annotation and processing pipeline
minimizing the risk of false correspondences (cf. Figure 2).

2D-3D Correspondence estimation/annotation 2D feature tracks (xj
i)

were automatically obtained with Voodoo Tracker3 using the Harris Corner de-
tector and a cross correlation based feature tracking.4 A subset of the tracks was
matched manually with 3D points. This is difficult since each point in the 2D
projection of the cloud corresponds to many 3D points at different depths. One
solution would be to automatically mesh the point clouds, but it turns out that
current approaches do not work well enough on our kind of data and also modify
the location of the points in a non-linear way introducing unknown biases to the
measurements. To ease point picking, we reduced the 3D point cloud to a 2D
representation in two steps:

Map Annotation We manually select landmark 3D points which were also
always found by the 2D feature tracker. These points are visualized in a “fold-
out” map of the measurement perimeter. Correspondences are established by
connecting map landmarks with 2D features in the images.

Range Annotation Using an initial pose estimate computed from these cor-
respondences, a range image with LIDAR reflectance information was created,
containing at most one point per pixel from which additional correspondences
can be chosen5.
3 http://www.digilab.uni-hannover.de/docs/manual.html
4 Cross correlation window: 21×21. Search neighborhood 21×21.
5 Screenshots and usage videos of the tools can be found in the supplemental material.
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Camera Estimation With Known Variances Neither the feature tracks
nor the 3D points or internal camera parameters are perfect. Also the intrinsic
calibration routine usually delivers a good initial guess κ̂ for the intrinsics. We
assume Gaussian errors in each of these values:

Xi = Zi + εXi
, εXi

∼ N3(0, ΣXi
) (4)

κ̂ = κ+ εκ , εκ ∼ N4(0, Σκ) (5)

xj
i = zji + εzj

i
, εxj

i
∼ N2(0, Σxj

i
) (6)

To accommodate for these errors we modify Equation 3:

({Zi}∗, T ∗, κ∗) = argmin
({Zi},T,κ)

Φ({Zi}, T, κ), (7)

with

Φ({Zi}, T, κ) =

n∑
j=0

∑
i∈V (j)

( ∥∥∥π (Zi, t
j, κ
)
− xj

i

∥∥∥2
Σ

x
j
i

+ ‖Xi − Zi‖2ΣXi

+ ‖κ̂− κ‖2Σκ

)
.

(8)

‖.‖2Σ denotes the squared Mahalanobis distance. Note the quadratic penalty
terms in Equation 8 and explicit usage of latent variables Zi and κ. These are
required as the first residual term is not linear in Xi and κ̂ whereas it is in xj

i.
This splitting of variables is often used to be able to better treat nonlinearities in
Gaussian energy functionals. [22, 23]. Also, note that the first term corresponds

to a bundle adjustment problem and the last two terms to priors on Xi and xj
i.

In the optimization, it is therefore possible to include 2D feature tracks without
3D correspondences. Parameter estimation was done using the open source Ceres
Solver [24] library.

3.2 Consistency And Precision of the Pose Estimation With
Synthetic Data

To assess the precision and consistency of our pose estimation system we borrow
ideas from [19]. Here, a method is proposed to compute consistency and pre-
cision of a dataset with respect to a reference dataset with lower but nonzero
uncertainty. As the output of our system has the highest available precision we
have to resort to synthetic data and make some changes to the formulas in [19]
to cater to the zero uncertainty of our reference.

Consistency is a measure for the likelihood that both reference and synthetic
datasets have the same parameters. As in [19] we report the Mahalanobis dis-
tance between the synthetic reference and the methods using the estimated
pose covariance.
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Precision refers to the certainty of the method of the correctness of its parame-
ter estimate. Given two parameter estimates with a similar consistency with
regard to the reference, the estimate with the smaller uncertainty should be
favoured. Here, we report the trace of the estimated covariances.

Table 1 summarizes the results. The reference data was generated by randomly
picking p key points in the first frame, randomly choosing a depth for each key
point between 5 and 70 meters and finally, by rejecting 3D points not visible in
the n− 1 other camera frames. The evaluation dataset was obtained by adding
Gaussian noise according to the noise column on key point position and 3D point.
We compare our method to a sampling based strategy similar to [13] where the
2D and 3D points are perturbed around the estimated solution (s times), the
best new parameter set obtained by minimizing the bundle adjustment functional
(keeping 2D and 3D measurements fixed) and estimating the sample mean and
covariance. In the result columns, we report mean consistency, precision and
run times in seconds after 30 runs. The standard deviation for consistency was
always around 1, for precision and run time an order of magnitude smaller than
the reported values. While we observe mostly similar consistency values between
both methods - with the sampling consistency deteriorating with higher noise
levels and larger datasets - our method produces a tighter precision bound on
the parameter estimate with much faster run times. Further parameter sweeps
can be found in the supplementary material.

4 Reference Data with Error Bars

Once the pose estimation in Equation 8 has been solved we can proceed in cre-
ating reference data by computing a range image based on κ, T and the LIDAR
point cloud by means of Equation 1. This reference data contains holes with no
information whenever no LIDAR measurements map to the corresponding pixel
location. In the following we consider the extended reference data mapping

π̃b : (X, t, κ)→ (x, d) (9)

which not only computes the projected image location of a 3D point but also
the disparity of this point given stereo baseline b. With d = (x, d) we will denote

Noise Number of Number of Sampling Sampling
[cm, px] points p frames n s = 100 s = 1000 Ours

(5, 0.1) 100 5 (5.1, 3.9e-4, 0.4) (5.1, 4.0e-4, 4.7) (5.3, 1.1e-4, 0.1)
(5, 0.5) 100 10 (7.7, 1.7e-2, 0.8) (7.6, 1.7e-2, 8.2) (7.6, 5.5e-3, 0.2)
(1, 0.1) 1000 10 (8.1, 7.8e-5, 9.5) (7.9, 7.9e-5, 96) (8.5, 2.2e-5, 2.4)
(5, 0.5) 1000 10 (8.2, 1.8e-3, 9.5) (8.0, 1.8e-3, 97) (7.2, 5.2e-4, 2.1)

Table 1. Pose estimation results on synthetic data. The tuples reported in the right 3
columns correspond to consistency, precision and run time. Lower values are better.
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the vector containing image coordinates and disparity. We omit the subscript b
in the further discussion as it remains constant for each sequence.

The inputs in π̃(Xi, t
j, κ) are either measurements or values derived from

measurements. As measurements always contain errors the reference point π̃(...)
will also have an error. To assess theses errors quantitatively we need to first
obtain error estimates for Xi, t

j and κ.

1. For the 3D point position Xi we assume that the components are indepen-
dently distributed such that ΣXi

= σ2
Xi
I. In our case this is the measurement

error of the LIDAR scanner. For point clouds consisting of multiple LIDAR
scans that were merged[12] via iterative closest points (ICP) or similar meth-
ods the error should be the error propagated from the ICP fit.

2. For the camera pose tj
∗

we assume that tj ∼ N6(tj
∗
, Σtj). As tj is a

value derived from a least squares fit, Σtj can be obtained by evaluating the
covariance matrix of Φ at the solution s∗ = {tj, ...., } with

COVΦ(s∗) = (JΦ(s∗)J
T
Φ(s∗))

−1. (10)

Here, JΦ(s∗) is the Jacobian of the residual vector of Φ evaluated at solution
s∗. Σtj is the diagonal block of COVΦ(s∗) corresponding to the parameter
block belonging to tj. Note that a regular bundle adjustment scenario has
an inherent scale ambiguity which leads to JΦ(s∗) being rank deficient. In
contrast, our functional has full rank as the scale is given by the 2D - 3D
correspondences. Also note that by supplying the correct error estimates
during the alignment fit COV is properly scaled.

3. For the camera intrinsics κ we either use the same approach as chosen
for tj or use variances estimated by external calibration tools. Again the
distribution is assumed to be Gaussian with κ ∼ N4(κ,Σκ).

The error distribution in π̃ of the reference point and the error in the disparity
measure can be obtained via error propagation. This is achieved either via sam-
pling input realizations from the above distributions or by analytical linear error
propagation. For the latter, the full covariance matrix of the inputs evaluates to:

COVIN =

ΣXi

Σtj

Σκ

 (11)

The error in π̃ is then obtained by linearizing π̃ at the reference point. Under
assumption of a Gaussian distribution of the input variables the output is again
Gaussian with covariance given by

COVd = Jπ̃(x,d))COVINJ
T
π̃(x,d). (12)

The choice between sampling and linear propagation depends on the available
computational resources as sampling will deliver more accurate output error
distributions given enough samples while linear error propagation is analytical
and thus fast.
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4.1 Reference Data Sensitivity

In the following we will give an analysis of our reference data using the tools
provided above. We will first discuss the error values used for the inputs. The
LIDAR accuracy is obtained from the data sheet as σXi

= 1 cm. We use this
accuracy measure for the error propagation step. For the contribution of the
3D points towards pose uncertainty (cf. Eq. 10) we have to assume a larger er-
ror due to the point spacing. Therefore, the localization of a manually picked
point (e.g. a window corner) is only accurate up to the mean distance between
points. This was determined to be σ′Xi

= 3.5 cm by estimating the point den-
sity on building facades where the landmark points were chosen from. The fea-
ture track accuracy was empirically estimated to be σxij = 0.5 px, while
errors in focal length and principal point were obtained from our calibra-
tion routine as σκ(fx,fy) = 1.97 px for the focal length and σκ(cx,cy) = 1.46 px
for the principal point. For the pose estimation accuracy, we report the
square root of the diagonal entries of Σtj obtained from covariance analysis to be
(rx, ry, rz) = (3, 3, 2)×10−4 for the rotation and (tx, ty, tz) = (1.23, 2.53, 2.17) cm
for the translation over 100 frames. The rotation is parametrized using a three
dimensional angle-axis representation. The error has an upper bound6 of 0.026◦.
For a LIDAR point at 50 m distance this corresponds to a localization error of
around 2 cm. The error in the translation also amounts to 2 cm. Using the errors
obtained from the input we can compute the uncertainty in the reference data
by means of error propagation. For each reference point the full covariance in
d (i.e. pixel localization and disparity error) was computed using both linear
error propagation and sampling. In Figure 4 the square roots of the diagonal
entries are reported for an example scene. The first two rows correspond to the
localization error and the third row is the disparity error in logarithmic scale.
For both linear propagation and sampling we see the expected inverse distance
reduction of all errors. While the disparity error for most parts is under a pixel
the localization error exceeds five pixels for points closer than a few meters. Also
noticeable is the rise in x localization error towards the image edges observable
in all our sequences. We believe that this is related to a rotational error of the
camera localization. Finally, we can see by comparing sampling and linear prop-
agation that the sampling propagation in general gives a tighter bound on the
reference data error while preserving the general shape. As both propagation
methods yield similar results we conclude that linear error propagation can be
used to obtain a quick though looser bound on the reference data error.

5 Disparity Maps with Error Bars

So far we discussed the reference data quality in terms of the localization and
disparity error of each reference point. For evaluating a stereo algorithm we are
faced with a slightly different question as we are concerned with the question how
good a given disparity map is. We hence need a distribution of possible disparity

6 Based on the maximum deviation of the angle-axis vector
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Fig. 4. Diagonal entries of uncertainty Σd obtained by linear error propagation
(left) and sampling (right). From top to bottom: Localization error in x and y as
well as disparity error of reference data points. Note that the bottom row is scaled
logarithmically. While the general form of the error distribution is the same for both
analytic and sampling based propagation, we obtain tighter bounds on all errors using
sampling.

values in each pixel. Given a set of reference data points with uncertainty R =
{(µr, Σr)} computed as described in Section 4, we define the probability of a
disparity map D to be

p(D|R) =
∏
xi∈D

1

N

∑
(µr,Σr)∈R

exp
(
(xi − µr)

TΣ−1r (xi − µr)
)

(13)

with xi = (pi, d) the disparity d at pixel position pi and normalization N . The
Gaussian distribution in Eq. 13 is multivariate (in pixel position and disparity).
This distribution can alternatively be computed by either sampling from the ref-
erence data distribution or analytically from the input data distribution directly
using Gaussian error propagation. The main drawback of a linear error propa-
gation is that the projection of Gaussian disparity distribution into image space
yields multi-modal per-pixel distributions which cannot be accounted for using
linear propagation. Figure 5 shows such distributions at example pixel locations.
We can distinguish three error cases: first, due to extrinsic camera parameter un-
certainty the locations of depth edges are projected to different pixel locations.
This causes bimodal disparity distributions since either the background or the
foreground is sampled. The result is a very high variance, i.e. a large, though
correct error bar on the ground truth.

Second, multi-modal distributions can occur caused by back surfaces: mul-
tiple surfaces such as the front and back of a house as well as the houses in
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Fig. 5. Example distributions on sampled depth maps (1000 samples). From left to
right: pixel with single depth layer, edge pixel with two depth layers, pixel with unre-
solved back faces. Top row: depth distribution. Bottom row: disparity distribution.

the background of the LIDAR point cloud are projected to the same pixel. This
is a fundamental limitation of point clouds - yet established meshing tools can
not deal with our data as was explained in Section 3.1. In these situations, the
ground truth is not wrong per se - but more reasoning is required to decide
whether the multi-modality of the distribution is caused either by a depth edge
or back surfaces.

Third, in case the scanner did not measure a foreground object, for example
due to limited resolution (landlines, small twigs on trees), the disparity distribu-
tion becomes unimodal but still displays the wrong depth of the object behind
the small foreground object. This case can only be dealt with by more accurate
measurement devices which not yet exist at least for our application. The prob-
lem can only be alleviated by manual segmentation of foreground objects which
are visible in the image, but not in the 3D scan.

Once the per-pixel distributions in disparity space are sampled, we can reduce
their information to per-pixel scalar values. Figure 6 displays two such options:
the top image contains the median of the disparity distribution. Assuming that
the number of foreground samples outweighs the number of back-surfaces by a
factor of at least two, this is a robust ground truth depth. Note however, that
this approach fails at depth boundaries when foreground and background can
easily become equally likely. Therefore, the lower image displays the standard
deviation of the disparity distributions. We can for example use it to define a
ground truth mask as is common for stereo benchmarks such as Middlebury or
KITTI: we choose a threshold defining when we cannot trust the ground truth
any longer. To obtain meaningful ground truth for a pixel-accurate algorithm,
one would typically choose a maximum standard deviation of 1 pixels.

It is important to mention that this type of masking is not necessarily the
best option for performance evaluation. A simple performance metric based on
the full distribution could be m(D|R) = − log(p(D|R)). For reference data with
localization error much smaller than the pixel size the sum in Equation 13 can
be replaced with a single normal distribution belonging to the reference point in
the respective pixel. The negative logarithm of the term then yields a per-pixel
weighted sum of a squared distance metric. A more appropriate evaluation would
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Fig. 6. Top: median of disparity distribution. Bottom: standard deviation of disparity
distribution. High variances show regions with unreliable ground truth mainly caused
by vegetation and camera misalignments. Regions looking like artifacts are caused by
backsurfaces as explained in the text. In all other regions, the standard deviation is
below two disparities.

require the stereo algorithm to propose a disparity distribution as well; then,
the performance metric would compare ground truth and computed disparity
distribution e.g. by a Kolmogorov-Smirnov test.

6 Conclusion and Outlook

We have presented a methodology to add error bars to image sequences with
disparity ground truth. It is based on previously measured point clouds and
arbitrary calibrated cameras and therefore highly versatile for all kinds of indoor
as well as outdoor applications. However, due to the chosen 3D scanning device
our approach is limited to static scenes.

Based on intuitive inputs such as calibration, 2D feature and 3D LIDAR
accuracy we estimated the covariance matrix of our model at the solution to
derive per-pixel depth-distributions. The results were used to define error bars,
e.g. by computing the depth variance at each pixel.

Results with a recently recorded scene showed that the localization error
caused by suboptimal camera estimates significantly deteriorates quality by in-
troducing multi-modal depth distributions at depth edges, especially at objects
close to the camera. Even with arguably the best hardware available today and
highly tuned manual alignment tools, the disparity standard deviation exceeds
several pixels at nearby objects. Objects with high geometric detail cannot be
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measured with LIDAR reliably, causing additional artifacts in the ground truth.
In this paper we used the accuracy claimed in the LIDAR manufacturer’s data
sheet which should be a very good approximation. More detailed studies such
as [25] will be incorporated in future work. Only in the background accuracies
well below one pixel can be achieved. This indicates that a per-pixel quality es-
timate of real-world ground truth is very important for ground truth generation
and any subsequent performance evaluation. Especially algorithms claiming to
be pixel-accurate should only take into account a masked subset of the ground
truth with standard deviations of less than 1 pixels. It should be noted however
that thresholding the reference data is only one simple way of harnessing known
error distributions of reference data for purposes of performance analysis. By an-
alyzing not only the absolute difference between stereo output Ds with reference
depth image Dr

R = |DR −DS|, (14)

but also taking into account a consistency value inspired by the Mahalanobis
distance used in Section 3.2

C = |DR −DS|/SR, (15)

where SR is the interquartile range of the reference data distribution, it is pos-
sible to gain more insights into the performance characteristics of a stereo al-
gorithm; especially, it is possible to identify situations where the algorithm is
achieving the same accuracy as the reference data measurements yet other areas
where no statements can be made about the algorithm performance. We give
a more detailed discussion of the metrics as an outlook in the supplementary
material, as the results presented there are only intended as a proof of concept
and require further investigation to be conclusive.

In terms of our experimental setup, the accuracy could be improved in smaller
scenes by using our approach with a micrometer-accurate structured light scan-
ner delivering object meshes rather than point clouds. Then, the limiting factor
becomes camera pose estimation, which is a matter of future studies. We will
further add ground truth with error bars for optical flow and look at improved
methods for backface analysis of large point clouds such as manual meshing,
usage of camera motion and point normal analysis. The results and presented
here as well as a supplementary video are available on the dataset homepage7.
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